

Benha University Faculty of Engineering at Shoubra Electrical Engineering Dept.

Ameeria Integrated Technology Education Cluster

Undergraduate Course

Electric Installation Design

Dr. Mohamed Ahmed Ebrahim

E-mail: mohamed.mohamed@feng.bu.edu.eg

Web site: http://bu.edu.eg/staff/mohamedmohamed033

1st step Lighting design steps

1st step : Determine the required lux in each room Get from :

- Standard - Egyptian Code

2st step : Choose the Lamp type according to :

1 - application

- 2- COLOR RENDERING , ROOM HEIGHT
- 3- MOUNTING TYPE, LIGHT DISTRIBUTION, SHAPE, COMPONENT, IP

3st step : Calculate Number of Luminaries Required - Distribution of Luminaries

Lux Standard (Egyptian Code)

ملحق رقم (م1) :معايير شدة الإضاءة

جدول رقم (م1): مستوى شدة الإضاءة في الفراغات المختلفة للمبانى

شدة الإضاءة (لوكس)	اثمكان	
120	سلالم	
60	ممرات	
	غرفة معيشة :	
150	عام	
300	قراءة	
120	غرفة طعام	
120	غرفة نوم	المبانى السكنية
	مطبيخ :	
120	عام	
500	أسطح العمل	
300	حمام	
	حجرة مكتب :	
300	- alq	
500	- سطح المكتب	

Choose Lamp According to RA

Ra	Application	
Above 90	Colour Matching, Picture Galleries	
80 - 90	Homes, Restaurants, Textile Industry	
60 - 80	Offices, Schools, Light Industry	
40 - 60	Heavy Industry	
20 - 40	Outdoor	

جدول رقم(2-11): خصائص المصابيح الفلورية T8 ذات اللون الأبيض

دليل أمانة نقل الألوان (R%)	الكفاءة الضوئية (لومن/وات)	درجة الحرارة اللونية (K °)	درجةَ البِياض	
	-	-		
69 - 60	80	4000	يض بارد Cool white	فيو
100 - 90	65	3800	بض بارد دي لوکس Deluxe cool white	ئير
59 - 40	80	3000	بض دافئ Warm white	فير
100 - 90	65	3000	بطن دافئ دي لوکس Deluxe warn white	فيو
70 70	65	3500	I In internal subjects	

79 - 70	65	3500	Universal white	أييض
79 – 70	67	6000	Daylight	ضوء النهار
100 – 9	58	5400	Deluxe daylight	ضو ، النهار دي لوکس

What is the meaning of CR

Color Rendering (CR):

is a quantitative measure of the ability of a light source to reveal the colors of various objects faithfully in comparison with an ideal or natural light source.

Different type of Lamps

Work plan height

Fluorescents	Mounting Heights	
36 Watt	up to 4 meters	
58 Watt	up to 5 meters	

For heights over 5m use highbay or lowbay.

High Bay Luminaires using Metal Halide Lamps	Minimum Mounting Heights
70 Watt	2.5 meters
125 to 150 Watt	3.5 meters
250 Watt	5 meters
400 Watt	8 meters
1000 Watt	10 meters
1500 Watt	12 meters
2000 Watt	15 meters

استخدام الوات المرتفع على ارتفاع قليل قد يسبب بهر glare غير مقلول

Luminaries types

Selection of luminaries determined by

Luminaries components

- * Lamp type
- * Ballast

* Housing

Luminaries classification

- * Mounting type (Recessed-surface)
- * Light Distribution
- * IP
- * Shape

Luminaries classified by mounting type

Suspended Linear

Fluorescent Luminaire

Portable Task Lighting

Cove-mounted Upliahting

Recessed Round Wall-washers

Eunctional Wall Sconce

Open Fluorescent Luminaire, Striplight

Wall-mounted Uplighting

Decorative Pendant Downward Light

Industrial

Suspended Direct-Indirect Fluorescent Luminaire (mostly up)

Open HID High-bay Luminaire, Glass or Plastic Reflector

Recessed Round Downlight

Track Lighting (Metal Halide)

Integrated

Open HID High-bay (Metal Reflector) Luminaire

Track Lighting (Incandescent)

Decorative Wall Sconce

Typical Compact Fluorescent Task Light

Luminaries classified by light distribution

Luminaries classified by shape or form

Ingress Protection (IP)

Ingress Protection Rating

- consists of the letters IP followed by two digits and an optional letter.

- it classifies the degrees of protection provided against the intrusion of solid objects, dust, accidental contact, and water in electrical enclosures.

- Max
$$IP = 68$$

Number of luminaires

$$N = \frac{E \times A}{\varphi \times LLF \times Uf}$$

Where:

N: Number of Luminaries

E: Lux of Location (code)

A: Area

Φ: Lumen of Lamp (lamp catalog)

LLF: Light Loss Factor (Take this Factor: (0.8 \rightarrow Residential, 0.6 - 0.7 \rightarrow Industrial)

UF: Utilization Factor (In most cases we take it 0.8)

Note:

- Number of Luminaries (N) may be 5.4 so we approximate it to 6 Luminaries.
- Distance between two luminaries must be equal double distance between to wall and luminaries.

An example of calculating the number of indoor lighting luminaires

1. Given

- An office area has length: 20 meter; width: 10 meter; height:
 3 meter.
- b) The ceiling to desk height is 2 meters.
- The area is to be illuminated to a general level of 250
 lux using twin lamp 32 watt CFL luminaires.
- d) Each lamp has an **initial output** (Efficiency) of 85 lumen per watt.
- e) The lamps Light Loss Factor (LLF) is 0.8
- f) Utilization Factor (Uf) is 0.8 and space height ratio (SHR) is 1.25.

2. Calculation

a) Total wattage of luminaires = Number of lamps x each lamp's watt.

 $= 2 \times 32 = 64$ Watt

Lumen per luminaire = Lumen efficiency(Lumen per Watt) x each

luminaire watt

= 85 x 64 = 5440 Lumen

c) Number of **luminaires**=

$$\mathsf{N} = \frac{E \times A}{\varphi \times LLF \times Uf}$$

= (250 x 20 x 10) / (5440 ×0.8× 0.8)= 14.36 luminaires (We will need 16 luminaires)

Minimum spacing between each luminaire
 The ceiling to desk height is 2 meters and space height ratio is 1.25, so
 Maximum spacing between luminaire = 2 × 1.25 = 2.25 meter

e) Number of required rows of luminaires along with width of room

Number of rows required= Width of room/Max. spacing=10 / 2.25 = 4 rows

f) Number of luminaires required in each row

Number of luminaires required in each row=Total luminaires/Number

of rows

= 16 / 4 = 4 luminaires in each row

g) Axial spacing between each luminaire

Axial spacing between luminaires= Length of room/Number of luminaires in each row

=20 / 4 = 5 Meters

g) Transverse spacing between each luminaire

Transverse spacing between luminaires = Width of room/Number of luminaires in row

=10 / 4 = 2.5 Meter.

Arrangement of Luminaries

Luminaries Arrangement

line arrangement

Dr: Mohamed Ahmed Ebrahim

field arrangement

Number of luminaries in length= $\sqrt{no.of.lumiaries} * \frac{length}{width}$

Number of luminaries in width= $\sqrt{no.of.lumiaries * \frac{width}{length}}$

Arrangement Constraints

- Distance between Luminar and another Luminar= double the distance between Luminar and Wall.
- Space height = 0.8 to 1.2

* Where: Space \rightarrow Distance between Luminaries

Height \rightarrow Distance between Luminar and work plane.

- $E_{av} = Desired E \pm 10\%$
- Uniform Distribution Factor: $E_{min}/E_{max} \ge 0.5$.
- Percentage of Eye Comfort: E_{av} . $E_{max} \ge 0.4$